11. मानव-नेत्र एवं रंगबिरंगी दुनियाँ


11. मानव-नेत्र एवं रंगबिरंगी दुनियाँ


मानव नेत्र और उसके भाग-



परिचय: 
मानव नेत्र (Human Eyes): मानव नेत्र एक अत्यंत मूल्यवान एवं सुग्राही ज्ञानेंद्रिय हैं। यह कैमरे की भांति कार्य करता हैं । हम इस अद्भूत संसार के रंग बिरंगे चीजो को इसी द्वारा देख पाते हैं। इसमें एक क्रिस्टलीय लेंस होता है। प्रकाश सुग्राही परदा जिसे रेटिना या दृष्टिपटल कहते हैं इस पर प्रतिबिम्ब बनता हैं । प्रकाश एक पतली झिल्ली से होकर नेत्र में प्रवेश करता हैं। इस झिल्ली को कॉर्निया कहते हैं । कॉर्निया के पीछे एक संरचना होती है। जिसे परितारिका कहते हैं। यह पुतली के साइज को नियंत्रित करती है। जबकि पुतली नेत्र में प्रवेश करने वाले प्रकाश को नियंत्रित करता हैं। लेंस दूर या नजदीक के सभी प्रकार के वस्तुओं का समायोजन कर वास्तविक तथा उल्टा प्रतिबिम्ब बनाता है।

नेत्र के विभिन्न भाग परिचय और कार्य: 
(1) कॉर्निया या स्वच्छ मंडल (Cornia) : नेत्र की काला दिखाई देने वाला गोलाकार भाग को कॉर्निया कहते हैं | यह नेत्र के डायफ्राम के ऊपर स्थित एक पतली झिल्ली होती है |
कार्य : इसी से होकर नेत्र में प्रकाश प्रवेश करता है | यह नेत्र का सबसे नाजुक भाग होता है |

(2) कंजक्टिवा (conjactiva): अग्र नेत्र का सफ़ेद भाग को sclera कहते है और इसके covering को जो कॉर्निया के चरों ओर फैला रहता है, कंजक्टिवा कहते है | इसे आँख का रक्षात्मक कवच भी कहा जा सकता है |
कार्य:
(i) यह नेत्र को बाहरी तत्वों से रक्षा करता है |
(ii) नेत्र को चिकनाहट प्रदान करता है |
(iii) यह आँख को बाहरी अघात से भी बचाता है |
(3) परितारिका (Iris) : यह कॉर्निया के पीछे स्थित होता है, यह एक गहरा वलयाकार पेशीय डायफ्राम है |
             
               परितारिका (Iris)
कार्य : यह पुतली के आकार (size) को नियंत्रित करता है |
(4) पुतली (Pupil) : यह परतारिका के वलय से बना एक रिक्त स्थान (छिद्र) है जो परितारिका के केंद्र में होता है और अभिनेत्र लेंस में जा कर खुलता है |
         
कार्य : यह नेत्र में प्रवेश करने वाले प्रकाश कि मात्रा को नियंत्रित करता है |
जब परितारिका सिकुड़ता है तो पुतली की साइज़ कम हो जाता है और नेत्र में प्रवेश करने वाले प्रकाश कि मात्रा भी कम हो जाता है | और जब परतारिका फैलता है तो पुतली का साइज़ भी बढ़ जाता है और नेत्र में प्रवेश करने वाले प्रकाश कि मात्रा भी बढ़ जाता है |
(5) अभिनेत्र लेंस (Eye lens) या क्रिस्टलीय लेंस (Cristalic lens): अभिनेत्र लेंस एक लचीला और मुलायम पदार्थ से बना एक अपारदर्शी उत्तल लेंस है जो विभिन्न दूरियों कि वस्तुओं को फोकसित करने के लिए अपना आकार बदलता रहता है |
कार्य: यह वस्तुओ का वास्तविक और उल्टा प्रतिबिम्ब बनाता है |
(6) पक्ष्माभी पेशियाँ (Cilliary Muscles) : ये पेशियाँ अभिनेत्र लेंस को जकडे रखती है और यह लेंस के आकार (size) को नियंत्रित करती हैं | यदि किसी कारण से इन पेशियों में दुर्बलता आ जाती है तो अभिनेत्र लेंस अपना आकार बदल नहीं पता है और उसकी समंजन क्षमता घट जाती है |
             
                    पार्श्व दृश्य (lateral view) 
पक्ष्माभी पेशियों का कार्य : यह लेंस के आकार (size) को नियंत्रित करती हैं |
(7) काचाभ द्रव (Vitreous Humor) : यह एक जेली जैसी पदार्थ का बना होता है जो अभिनेत्र लेंस और रेटिना से लेकर पुरे नेत्र गोलक में भरा रहता है | नेत्र गोलक का अधिकांश भाग काचाभ द्रव घेरता (occupies) है | 
कार्य:
(i) यह नेत्र गोलक को आकार प्रदान करता है |
(ii) रेटिना तक पहुँचने वाला प्रकाश लेंस से होकर इसी द्रव से गुजरता है |
(8) रेटिना (Retina) : इसे दृष्टि पटल भी कहते है और यह नेत्र गोलक का पश्च भाग जो परदे का कार्य करता है रेटिना कहलाता है | यह नेत्र का प्रकाश सुग्राही भाग (Light sensative part) होता है |
रेटिना पर बनने वाले प्रतिबिम्ब कि प्रकृति वास्तविक एवं उल्टा होता है |
कार्य:
(i) यह नेत्र लेंस द्वारा बनने वाले प्रतिबिम्ब के लिए परदे का कार्य करता है |
(ii) इसकी कोशिकाएं प्रकाश सुग्राही होती हैं जो इस पर बनने वाले प्रतिबिम्ब का अध्ययन भी करता है |
(9) दृक तंत्रिका (Optic Nerve) : यह तंत्रिका नेत्र गोलक के पश्च भाग से निकल कर मस्तिष्क के एक हिस्से से जुड़ता है |
कार्य: यह रेटिना पर बनने वाले प्रतिबिम्ब को संवेदनाओं द्वारा मस्तिष्क तक पहुँचाता है |

समंजन क्षमता और नेत्र दोष-



समंजन क्षमता (Power of Accommodation): अभिनेत्र लेंस की वह क्षमता जिसके कारण वह अपनी फोकस दूरी को समायोजित कर लेता हैं समंजन क्षमता कहलाती हैं।
ऐसा नेत्र की वक्रता में परिवर्तन होन पर इसकी फोकस दूरी भी परिवर्तित हो जाती हैं । नेत्र की वक्रता बढ़ने पर फोकस दूरी घट जाती हैं। जब नेत्र की वक्रता घटती हैं तो फोकस दूरी बढ़ जाती है।
मानव नेत्र की देखने कि सीमा (Limitation of vision) : 25 सेमी से अनंत तक होती है |
किसी वस्तु की स्पष्ट देखने कि न्यूनतम दुरी 25 सेमी है और स्पष्ट देखने कि अधिकतम सीमा अनंत (infinity) होती है |
निकट बिंदु (Near Point) : वह न्यूनतम दुरी जिस पर रखी कोई वस्तु बिना किसी तनाव के अत्याधिक स्पष्ट देखि जा सकती है, सुस्पष्ट देखने की इस न्यूनतम दुरी को निकट-बिंदु कहते हैं |
समान्यत: देखने कि यह न्यूनतम दुरी 25 सेमी होती है |
अत: हमें किसी वस्तु को स्पष्ट देखने के लिए उसे नेत्र से 25 सेमी दूर रखा जाना चाहिए |
दूर बिंदु (Far Point) : वह दूरतम बिंदु जिस तक कोई नेत्र वस्तुओं को सुस्पष्ट देख सकता है, नेत्र का दूर-बिंदु (Far Point)  कहलाता है। सामान्य नेत्र के लिए यह अनंत दूरी पर होता है।
मोतियाबिंद (Cataract) : कभी कभी अधिक उम्र के कुछ व्यक्तियों में क्रिस्टलीय लेंस पर एक धुँधली परत चढ़ जाती है। जिससे लेंस दूधिया तथा धुँधली हो जाता है। इस स्थिति को मातियाबिन्द कहते हैं।
कारण: मोतियाबिंद क्रिस्टलीय लेंस के दूधियाँ एवं धुंधला होने के कारण होता है |
निवारण : इसे शल्य चिकित्सा (surgeory) के द्वारा दूर किया जाता हैं।
दृष्टि दोष : कभी कभी नेत्र धीरे - धीरे अपनी समंजन क्षमता खो देते हैं। ऐसी स्थिति में व्यक्ति वस्तुओं को आराम से सुस्पष्ट नही देख पाते हैं। नेत्र में अपवर्तन दोषो के कारण दृष्टि धुँधली हो जाती हैं। इसे दृष्टि दोष कहते हैं।
यह समान्यतः तीन प्रकार के होते हैं। इसे दृष्टि के अपवर्तन दोष भी कहा जाता है | 
1.    निकट - दृष्टि दोष (मायोपिया)
2.    दीर्ध - दृष्टि दोष (हाइपरमायोपिया)
3.    जरा - दूरदृष्टिता (प्रेसबॉयोपिया)
1. निकट-दृष्टि दोष (Myopia) : निकट-दृष्टि दोष (मायोपिया) में कोई व्यक्ति निकट की वस्तुओं को स्पष्ट देख तो सकता हैं परन्तु दूर रखी वस्तुओं को वह सुस्पष्ट नहीं देख पाता है। ऐसे व्यक्ति का दूर बिन्दु अनंत पर न होकर नेत्र के पास आ जाता हैं । इसमें प्रतिबिम्ब दृष्टि पटल पर न बनकर दृष्टिपटल के सामने बनता है।
कारण: 
(i) अभिनेत्र लेंस की वक्रता का अत्याधिक होना | अथवा
(ii)  नेत्र गोलक का लंबा हो जाना।
निवारण: इस दोष को किसी उपयुक्त क्षमता के अपसारी (अवतल ) लेंस के उपयोग द्वारा संशोधित किया जा सकता हैं।
निकट-दृष्टि दोष और प्रकाश किरण आरेख द्वारा संशोधन : 
निकट-दृष्टि दोष का प्रकाश किरण आरेख : 
स्थिति I -  हम जानते है कि दूर बिंदु अनंत पर होता है यह एक समान्य स्थिति है |

                        (i) समान्य स्थिति 
स्थिति IIपरन्तु इस प्रकार के दोष में दूर बिंदु अनंत पर न होकर नेत्र के पास आ जाता है | तब इस दोष से ग्रसित व्यक्ति नजदीक रखी वस्तुओं को तो देख पाता है परन्तु दूर रखी वस्तु को सुस्पष्ट नहीं देख पाता है | इसका कारण यह है कि दूर बिंदु आँख के पास आ जाता है | इसके कारण प्रतिबिम्ब रेटिना पर न बनकर प्रतिबिम्ब रेटिना के सामने बनता है | देखिये प्रकाश किरण आरेख (ii) 

                          (ii) निकट-दृष्टि दोष युक्त नेत्र 
स्थिति III - निवारण (संशोधन) : इस स्थिति के निवारण के लिए किसी उपयुक्त क्षमता के अपसारी (अवतल ) लेंस के उपयोग द्वारा संशोधित किया जाता हैं।

2. दीर्घ-दृष्टि दोष (Hypermetropia) : दीर्ध - दृष्टि दोष (हाइपरमायोपिया) में कोई व्यक्ति दूर की वस्तुओं को स्पष्ट देख तो सकता हैं परन्तु निकट रखी वस्तुओं को वह सुस्पष्ट नहीं देख पाता है। ऐसे व्यक्ति का निकट बिन्दु समान्य निकट बिन्दू 25 सेमी पर न होकर दूर हट जाता हैं ।इसमें प्रतिबिम्ब दृष्टिपटल पर न बनकर दृष्टिपटल के पीछे बनता है। ऐसे व्यक्ति को स्पष्ट देखने के लिए पठन सामग्री को नेत्र से 25 सेमी से काफी अधिक दूरी पर रखना पडता हैं ।
कारण: 
(i) अभिनेत्र लेंस की फोकस दूरी का अत्याधिक हो जाना अथवा
(ii) नेत्र गोलक का छोटा हो जाना।
निवारण: इस दोष को किसी उपयुक्त क्षमता के अभिसारी (उतल ) लेंस के उपयोग द्वारा संशोधित किया जा सकता हैं।
दीर्घ-दृष्टि दोष एवं प्रकाश किरण आरेख द्वारा संशोधन : 
दीर्घ-दृष्टि दोष का प्रकाश किरण आरेख : 
स्थिति-I : एक समान्य नेत्र का निकट बिंदु 25 सेमी होता है जो इस दृष्टि दोष में 25 सेमी से हट जाता है | 

                      (i) एक समान्य नेत्र का निकट बिंदु
स्थिति-II : ऐसे दृष्टि दोष वाले व्यक्ति का निकट बिन्दु समान्य निकट बिन्दू 25 सेमी पर न होकर दूर हट जाता हैं ।इसमें प्रतिबिम्ब दृष्टिपटल पर न बनकर दृष्टिपटल के पीछे बनता है। 

                    (ii) दीर्घ-दृष्टि दोष युक्त नेत्र 
स्थिति-III- एक उपयुक्त क्षमता के संशोधक लेंस द्वारा इस दृष्टि दोष का निवारण किया जाता है | 

                    (iii) उत्तल लेंस द्वारा संशोधन 
3. जरा-दूरदृष्टिता (Presbyopia) : यु में वृद्धि होने के साथ साथ मानव नेत्र की समंजन - क्षमता घट जाती हैं। अधिकांश व्यक्तियों का का निकट बिन्दु दूर हट जाता हैं इस दोष को जरा दूरदृष्टिता कहते है ।
इस दृष्टि दोष में कुछ व्यक्तियों में कई बार दोनों प्रकार के दृष्टि दोष जैसे - निकट-दृष्टि दोष और दीर्घ-दृष्टि दोष पाए जाते हैं |
कारण: इन्हें पास की वस्तुए अराम से देखने में कठिनाई होती हैं।जिसका निम्न कारण है :
(i) यह दोष पक्ष्माभी पेशियों के धीरे धीरे दुर्बल होने के कारण तथा
(ii) क्रिस्टलीय लेंस की लचीलेपन में कमी के कारण उत्पन्न होता हैं ।
निवारण: इसे द्विफोकसी लेंस के उपयोग से दूर किया जा सकता है।
द्विफोकसी लेंस : सामान्य प्रकार के द्विफोकसी लेंसों में अवतल तथा उत्तल दोनों
लेंस होते हैं। ऊपरी भाग अवतल लेंस होता है। यह दूर की वस्तुओं को सुस्पष्ट देखने
में सहायता करता है। निचला भाग उत्तल लेंस होता है। यह पास की वस्तुओं को सुस्पष्ट
देखने में सहायक होता है।
आजकल संस्पर्श लेंस (contact lens) का प्रयोग से दृष्टि दोषों का संशोधन किया जा रहा है |

प्रिज्म से प्रकाश का अपवर्तन-


प्रिज्म से प्रकाश का अपवर्तन : 
प्रकाश का अपवर्तन (Refraction of Light): जब कोई प्रकाश की किरण एक माध्यम से दुसरे माध्यम में प्रवेश करती है तो यह अपने मार्ग से विचलित हो जाती है इसे ही प्रकाश का अपवर्तन कहते है |
प्रिज्म (Prizm): यह एक तिकोना काँच का स्लैब होता है जिसके दो त्रिभुजाकार आधार तथा तीन आयताकार पार्श्व पृष्ठ होते हैं | ये पृष्ठ एक दुसरे पर झुके होते हैं |

                     प्रिज्म 
प्रिज्म कोण (Angle of Prizm): इसके दो पार्श्व फलकों के बीच के कोण को प्रिज्म कोण कहते हैं |

            काँच के त्रिभुजाकार प्रिज्म से प्रकाश का अपवर्तन 
PE - आपतित किरण
EF - अपवर्तित किरण
FS - निर्गत किरण
∠A, ∠B, ∠C - प्रिज्म कोण
∠D - विचलन कोण
∠i - आपतन कोण
∠r - अपवर्तन कोण
∠e - निर्गत कोण
प्रिज्म द्वारा प्रकाश का अपवर्तन : यहाँ PE आपतित किरण है, EF अपवर्तित किरण है तथा FS निर्गत किरण है। आप देख सकते हैं कि पहले पृष्ठ AB पर प्रकाश की किरण वायु से काँच में प्रवेश कर रही है। अपवर्तन वेफ पश्चात प्रकाश की किरण अभिलंब की ओर मुड़ जाती है। दूसरे पृष्ठ AC पर, प्रकाश की किरण काँच से वायु में प्रवेश करती है, तो प्रकाश कि किरण अभिलंब से दूर भागती है | 
  • प्रिज्म भी काँच के घनाकार स्लैब की तरफ अपवर्तन के सभी नियमों का पालन करता है | 

स्पेक्ट्रम : जब सूर्य का श्वेत प्रकाश किसी प्रिज्म से होकर गुजरता है तो विभिन्न वर्णक्रमों में विभाजित हो जाता है | प्रकाश के अवयवी वर्णों के इस बैंड को स्पेक्ट्रम कहते हैं |
इस वर्णक्रम को VIBGYOR से दर्शाया जाता है ताकि इनका क्रम याद रखने में सहायक हो |
बैगनी (violet), जमुनी (Indigo), नीला (blue), हरा (green), पीला (yellow), नारंगी (orange) तथा लाल (red) |
विक्षेपण : प्रकाश के अवयवी वर्णों में विभाजन को विक्षेपण कहते हैं |
श्वेत प्रकाश: कोई भी प्रकाश जो सूर्य के प्रकाश के सदृश स्पेक्ट्रम बनाता है, प्रायः
श्वेत प्रकाश कहलाता है।
स्पेक्ट्रम प्राप्त करने के लिए सर आइजक न्यूटन का प्रयोग :

आइजक न्यूटन ने सर्वप्रथम सूर्य का स्पेक्ट्रम प्राप्त करने के लिए काँच के प्रिज़्म का उपयोग किया। एक दूसरा समान प्रिज़्म उपयोग करके उन्होंने श्वेत प्रकाश के स्पेक्ट्रम के वर्णों को और अधिक विभक्त करने का प्रयत्न किया। किन्तु उन्हें और अधिक वर्ण नहीं मिल पाए। फिर एक दूसरा सर्व सम प्रिज़्म पहले प्रिज्म के सापेक्ष उलटी स्थिति में रखा। इससे स्पेक्ट्रम के सभी वर्ण दूसरे प्रिज़्म से होकर गुशरे। उन्होंने देखा कि दूसरे प्रिश्म से श्वेत प्रकाश का किरण पुंज निर्गत हो रहा है। इस प्रेक्षण से न्यूटन को यह विचार आया कि सूर्य का प्रकाश सात वर्णों से मिलकर बना है।
  • न्यूटन के इस प्रयोग के आधार पर हम कह सकते है कि सूर्य का प्रकाश सात वर्णों से मिलकर बना है |
  • श्वेत प्रकाश प्रिश्म द्वारा इसके सात अवयवी वर्णों में विक्षेपित हो जाता है। 
  • किसी प्रिश्म से गुशरने के पश्चात, प्रकाश के विभिन्न वर्ण, आपतित किरण के सापेक्ष अलग-अलग कोणों पर झुकते (मुड़ते) हैं।
  • लाल प्रकाश सबसे कम झुकता है जबकि बैंगनी सबसे अधिक झुकता है।
  • आइजक न्यूटन ने सर्वप्रथम सूर्य का स्पेक्ट्रम प्राप्त करने के लिए काँच के प्रिज़्म
    का उपयोग किया।
  • एक दूसरा समान प्रिज़्म उपयोग करके उन्होंने श्वेत प्रकाश के स्पेक्ट्रम के वर्णों को और अधिक विभक्त करने का प्रयत्न किया।

प्राकृतिक परिघटनाएं एवं वायुमंडलीय अपवर्तन-



प्राकृतिक परिघटनाएं (Natural Phenomenons) : हमारे आसपास बहुत सी घटनाएँ होती रहती हैं , जो कुछ प्राकृतिक कारणों से होती हैं |  ऐसी घटनाओं को प्राकृतिक परिघटनाएं कहा जाता है | जैसे - इन्द्रधनुष का बनाना, आकाश में तारों का टिमटिमाना, आकाश का नीला दिखाई देना, सूर्योदय एवं सूर्यास्त के समय सूर्य का रक्ताभ प्रतीत होना इत्यादि |
पूर्ण आतंरिक परावर्तन (Total Internal Reflection) : पूर्ण आतंरिक परावर्तन एक प्रकाशीय परिघटना है जिसमें प्रकाश की किरण किसी माध्यम के तल से ऐसे कोण से आपतित होती है कि अपवर्तन के बाद उसका परावर्तन उसी माध्यम में हो जाता है जिस माध्यम से वह आई होती है | इसे ही पूर्ण आतंरिक परावर्तन कहते हैं |

क्रांतिक कोण (Critical Angle) : वह आपतन कोण जिसका अपवर्तन कोण का मान 90o या उससे अधिक हो | क्रांतिक कोण कहलाता है |
किसी माध्यम में पूर्ण आतंरिक परावर्तन होने कि शर्त : 
(i) प्रकाश कि किरण अधिक अपवर्तनांक से कम अपवर्तनांक के माध्यम की ओर प्रवेश करे अर्थात सघन माध्यम से विरल माध्यम की ओर प्रवेश करे |
(ii) आपतन कोण का मान क्रांतिक कोण से अधिक हो |
वायुमंडलीय अपवर्तन (Atmospheric Refraction): हमारे वायुमंडल में वायु की समान्यत: दो परतें हैं एक गर्म वायु की तथा दूसरी ठंठी वायु की, जो मिलकर दो भिन्न-भिन्न अपवर्तनांकों की माध्यम बनाती है | गर्म वायु हल्की होती है जो ऊपर उठ जाती है और ठंठ वायु जो थोड़ी भारी होती है वह पृथ्वी कि सतह की ओर रहती है | ठंठ वायु सघन माध्यम का कार्य करता है और गर्म वायु बिरल माध्यम का कार्य करता है | इससे होकर गुजरने वाली प्रकाश की किरण में अपवर्तन होता है इसे ही वायुमंडलीय अपवर्तन कहते हैं |
  • पृथ्वी के वायुमंडल के कारण होने वाले प्रकाश के अपवर्तन को वायुमंडलीय अपवर्तन कहते हैं | 
  • गरम वायु में से होकर देखने पर वस्तु की आभासी स्थिति परिवर्तित होती रहती है।
  • वायुमंडलीय अपवर्तन के कारण बहुत सी परिघटनाएं होती रहती है जैसे- तारों, का टिमटिमाना, अग्रिम सूर्योदय में सूर्य की आभासी स्थित दिखाई देना इत्यादि | 
  • ऊपर से जैसे-जैसे हम पृथ्वी की सतह की ओर बढ़ते जाते है वायु का अपवर्तनांक बढ़ता जाता है | 
वायुमंडलीय अपवर्तन का कारण: पृथ्वी के वायुमंडल के कारण होने वाले प्रकाश का अपवर्तन |
तारों का टिमटिमाना (Twinkling of stars) :  तारों के प्रकाश के वायुमंडलीय अपवर्तन के कारण ही तारे टिमटिमाते प्रतीत होते हैं। पृथ्वी के वायुमंडल में प्रवेश करने के पश्चात पृथ्वी के पृष्ठ पर पहुँचने तक तारे का प्रकाश निरंतर अपवर्तित होता जाता है। वायुमंडलीय अपवर्तन उसी माध्यम में होता है जिसका क्रमिक परिवर्ती अपवर्तनांक हो। क्योंकि वायुमंडल तारे के प्रकाश को अभिलंब की ओर झुका देता है, अतः तारे की आभासी स्थिति उसकी वास्तविक स्थिति से कुछ भिन्न प्रतीत होती है। अतः तारे की आभासी स्थिति विचलित होती रहती है तथा आँखों में प्रवेश करने वाले तारों के प्रकाश की मात्रा झिलमिलाती रहती है  -जिसके कारण कोई तारा कभी चमकीला प्रतीत होता है तो कभी धुँधला, जो कि टिमटिमाहट का प्रभाव है।
ग्रहों का टिमटिमाते हुए नहीं दिखाई देना : ग्रह तारों की अपेक्षा पृथ्वी के बहुत पास हैं और इसीलिए उन्हें विस्तृत स्रोत की भाँति माना जा सकता है। यदि हम ग्रह को बिंदु-साइश के अनेक प्रकाश स्रोतों का संग्रह मान लें तो सभी बिंदु साइश के प्रकाश-स्रोतों से हमारे नेत्रों में
प्रवेश करने वाले प्रकाश की मात्रा में कुल परिवर्तन का औसत मान शून्य होगा, यही कारण है कि ग्रह टिमटिमाते हुए दिखाई नहीं देते हैं |
सुर्योदय होने के पहले एवं सुयास्त होने बाद भी सूर्य का दिखाई देना : 
पृथ्वी के उपर वायुमंडल में जैसे - जैसे हम ऊपर जाते हैं, वायु हल्की होती जाती हैं । सुर्योदय होने के पहले एवं सुर्यास्त होने बाद सूर्य से चलने वाली किरणें पूर्ण आंतरिक परावर्तित  होकर हमारी आँख तक पहुँच जाती हैं । जब हम इन किरणों को सीधा देखते हैं तो हमें सूर्य की अभासी प्रतिबिम्ब क्षैतिज से उपर दिखाई देता है जबकि सूर्य उस समय वास्तव में क्षितिज से नीचे होता है |
वास्तविक सूर्योदय : वास्तविक सूर्योदय का अर्थ है सूर्य का वास्तव में क्षितिज को पार करना |
सूर्य की आभासी स्थिति : इस स्थिति में सूर्य अपने वास्तविक स्थान से थोडा उठा हुआ नजर आता है | जो वास्तव में सूर्य की स्थिति नहीं होती है | इसे ही सूर्य कि आभासी स्थित कहते हैं |
यह घटना भी ठीक उसी तरह होता है जब हम किसी शीशे की गिलास में पानी डालकर एक सिक्के को देखते है तो वह सिक्का अपने वस्तविक स्थान से थोडा उठा हुआ नजर आता है |
इन्द्रधनुष का बनना : वर्षा होने के पश्चात् ही हमें इन्द्रधनुष दिखाई देता है | इन्द्रधनुष आकाश में जल की सूक्ष्म बूंदों में दिखाई देने वाला स्पेक्ट्रम है | जब जल की किसी बूंद से होकर सूर्य का प्रकाश गुजरता है तो प्रकाश का परिक्षेपण होने के कारण इन्द्र धनुष बनता है | जिसमें सूर्य के आपतित प्रकाश को ये बूँदें अपवर्तित तथा विक्षेपित करती हैं, तत्पश्चात इसे आंतरिक परावर्तित करती हैं, अंततः जल की बूँद से बाहर निकलते समय प्रकाश को पुनः अपवर्तित करती हैं | तो इस स्थिति में जल की वह बूंद प्रिज्म की भांति कार्य करता है और परिमाण स्वरुप सूर्य की विपरीत दिशा में इन्द्रधनुष बनता है |
  • जल की बुँदे प्रिज्म की भांति कार्य करती हैं | 
  • वर्षा होने के पश्चात् ही हमें इन्द्रधनुष दिखाई देता है | 
  • इन्द्रधनुष आकाश में जल की सूक्ष्म बूंदों में दिखाई देने वाला स्पेक्ट्रम है |
  • यह हमेशा सूर्य की विपरीत दिशा में बनता है | 
  • यह प्रकाश के परिक्षेपण के कारण होता है | 

प्रकाश का प्रकीर्णन-


प्रकाश का प्रकीर्णन :
प्रकाश जिस मार्ग से होकर गुजरता है यदि उस माध्यम में कोलाइडल विलयन के कण हो तो वे कण प्रकाश को प्रकीर्णित (फैलाना) कर देते है | इसे ही प्रकाश का प्रकीर्णन कहते है |
प्रकाश के प्रकीर्णन से होने वाली परिघटनाओं का उदाहरण : प्रकाश के प्रकीर्णन से होने वाली बहुत सी परिघटनाएं होती रहती हैं जो हमें देखने को मिलती हैं | जैसे -
आकाश का नीला रंग, गहरे समुद्र के जल का रंग, सूर्योदय तथा सूर्यास्त के समय सूर्य का रक्ताभ दिखाई देना आदि |
टिंडल प्रभाव (Tyndal Effect) : जब कोई प्रकाश किरण पुंज ऐसे महीन कणों से टकराता है तो उस किरण पुंज का मार्ग दिखाई देने लगता है। इन कणों से विसरित प्रकाश परावर्तित होकर हमारे पास तक पहुँचता है। कोलॉइडी कणों द्वारा प्रकाश के प्रकीर्णन की परिघटना को टिंडल प्रभाव कहते हैं |
संक्षेप में, कोलाइडली कणों द्वारा गुजरने वाले प्रकाश के मार्ग को कोलाइडल के कण दृश्य बना देते है, प्रकाश के मार्ग को फैलने की इस परिघटना को टिंडल प्रभाव कहते हैं |
टिंडल प्रभाव के उदाहरण : 
1. जब धुंएँ से भरे किसी कमरे में किसी सूक्ष्म छिद्र से कोई पतला प्रकाश किरण पुंज प्रवेश करता है तो इस परिघटना को देखा जा सकता है।
2. जब किसी घने जंगल के वितान (canopy) से सूर्य का प्रकाश गुजरता है तो टिंडल प्रभाव को देखा जा सकता है।
3. जंगल के कुहासे में जल की सूक्ष्म बूँदें प्रकाश का प्रकीर्णन कर देती हैं।
ये सभी घटनाएँ कोलाइडल विलयन की उपस्थिति के कारण हमें टिंडल प्रभाव दिखाई देता है | कोलाइडल विलयन के उदाहरण हैं |
वायु, धूम, कोहरा, दूध, धुँआ, जेली, क्रीम इत्यादि |
कोलाइडल विलयन के कण वास्तविक विलयन से बड़े होते है जो देखे जा सकते हैं | जबकि वास्तविक विलयन के कण एक समान होने के कारण इन्हें अलग-अलग पहचाना नहीं जा सकता है, यही कारण है कि टिंडल प्रभाव के दौरान कोलाइडल विलयन के कण दिखाई देते हैं |
बिना कण के प्रकाश का प्रकीर्णन नहीं होता है, अर्थात जहाँ ये कण मौजूद नहीं है वहाँ प्रकीर्णन नहीं होता है जैसे निर्वात, जिसका उदाहरण है अंतरिक्ष में प्रकाश का प्रकीर्णन नहीं होता है | यही कारण है कि अन्तरिक्ष यात्रियों को आकाश काला दिखाई देता है क्योकि वहाँ प्रकाश प्रकीर्णित नहीं होता है | 
  • किसी वास्तविक विलयन से गुशरने वाले प्रकाश किरण पुंज का मार्ग हमें दिखाई नहीं देता। तथापि, किसी कोलॉइडी विलयन में जहाँ कणों का साइज़ अपेक्षाकृत बड़ा होता है, यह मार्ग दृश्य होता है।
प्रकीर्णित प्रकाश का रंग को प्रभावित करने वाला कारक :
1. प्रकीर्णित प्रकाश का वर्ण, प्रकीर्णन करने वाले कणों के साइज़ पर निर्भर करता है।
प्रकाश के वर्णों का तरंगदैर्ध्य : 
इसके लिए प्रकाश के विभिन्न वर्णों पर विचार करना होगा, प्रिज्म द्वारा बने प्रकाश के विभिन्न अव्यवी वर्णों के विषय में हम जान चुके है | हमने वहाँ देखा कि जिस वर्ण का तरंगदैर्ध्य सबसे अधिक है वह कम झुकता है और जिसका सबसे कम है वह वर्ण सबसे अधिक के कोण पर झुकता है | लाल रंग सबसे कम झुकता है अर्थात लाल रंग की तरंगदैर्ध्य सबसे अधिक होता है,  श्वेत प्रकाश को छोड़कर | नीला प्रकाश का तरंगदैर्ध्य कम होता है इसलिए यह लाल, पीला, हरा आदि की तुलना में अधिक झुकता है |
कौन-सा रंग अधिक प्रकीर्णित होता है और कौन-सा रंग कम : 
अत्यंत सूक्ष्म कण मुख्य रूप से नीले प्रकाश को प्रकीर्ण करते हैं जबकि बड़े साइज़ के कण अधिक तंरगदैर्घ्य के प्रकाश को प्रकीर्ण करते हैं। यदि प्रकीर्णन करने वाले कणों का साइज़ बहुत अधिक है तो प्रकीर्णित प्रकाश श्वेत भी प्रतीत हो सकता है।
यहाँ हम देखते है छोटे कण कम तरंगदैर्ध्य के रंग को प्रकीर्णित करता है और जैसे-जैसे कणों का आकार बढ़ता जाता है ये कण अधिक तरंगदैर्ध्य के रंग को प्रकीर्णित करता है | श्वेत प्रकार का तरंगदैर्ध्य  लाल रंग से भी अधिक होता है |
प्रकाश के प्रकीर्णन से होने वाली परिघटनाएं : 
1. स्वच्छ आकाश का नीला दिखाई देना : 
जब सूर्य का प्रकाश वायुमंडल से गुजरता है, वायु के सूक्ष्म कण लाल रंग की अपेक्षा नीले रंग (छोटी तरंगदैर्घ्य) को अधिक प्रबलता से प्रकीर्ण करते हैं। प्रकीर्णित हुआ नीला प्रकाश हमारे नेत्रों में प्रवेश करता है। तो हमें आकाश नीला दिखाई देता है |
2. अंतरिक्ष यात्रियों को आकाश काला दिखाई देना :
जहाँ वायुमंडल नहीं है वहाँ कण नहीं जहाँ कण नहीं वहाँ प्रकाश का प्रकीर्णन नहीं | यदि हमारी पृथ्वी पर वायुमंडल न होता तो कोई प्रकीर्णन न हो पाता | तब पृथ्वी से भी आकाश काला ही प्रतीत होता है | अत्याधिक ऊँचाई पर वायुमंडल नहीं होने के कारण प्रकाश का प्रकीर्णन नहीं हो पाता है जहाँ प्रकीर्णन नहीं होता है वहाँ प्रकाश का मार्ग दिखाई नहीं देता, काला दिखाई देता है | यही कारण है कि अंतरिक्ष यात्रियों को आकाश काला दिखाई देता है |
3. गहरे समुद्र का जल का रंग नीला दिखाई देना : 
जब सूर्य का प्रकाश समुद्र के तल पर पड़ता है तो समुद्र का जल नीले रंग की अपेक्षा लाल, पीला संतरी आदि रंगों को अधिक तेजी से सोंखता है और अधिकांश नीले रंग वापस आ जाता है अर्थात नीले रंग का प्रकीर्णन हो जाता है | यही कारण है कि समुद्र का जल नीला दिखाई देता है |
4. सूर्योदय तथा सूर्यास्त के समय सूर्य का रक्ताभ दिखाई देना : 
क्षितिज के समीप स्थित सूर्य से आने वाला प्रकाश हमारे नेत्रों तक पहुँचने से पहले पृथ्वी के वायुमंडल में वायु की मोटी परतों से होकर गुजरता है | जब सूर्य सिर से ठीक ऊपर हो तो सूर्य से आने वाला प्रकाश बहुत कम दुरी तय करता है, यह तब होता है जब सूर्य क्षितिज पर हो | क्षितिज के समीप नीले तथा कम तरंगदैर्घ्य के प्रकाश का अधिकांश भाग कणों द्वारा प्रकीर्ण हो जाता है। इसीलिए, हमारे नेत्रों तक पहुँचने वाला प्रकाश अधिक तरंगदैर्घ्य का होता है अर्थात लाल रंग का होता है | यही कारण है कि सूर्योदय या सूर्यास्त के समय सूर्य रक्ताभ प्रतीत होता है।
खतरे के सिग्नल में लाल रंग का उपयोग : लाल रंग तरंगदैर्ध्य अन्य रंगों की तुलना में अधिक होता है | लाल रंग का तरंगदैर्ध्य नीले रंग की अपेक्षा लगभग 1.8 गुना अधिक होता है | लाल रंग कुहरे या धुंएँ से सबसे कम प्रकीर्ण होता है और तरंगदैर्ध्य अधिक होने के कारण इस रंग का प्रकाश अधिक दूर तक जाता है | यह दूर से देखने पर भी लाल रंग का ही दिखाई देता है | 
नोट: जिन वर्णों का प्रकीर्ण हो जाता है वह वर्ण दिखाई नहीं देता है और जिस वर्ण का प्रकीर्णन नहीं होता है वह बना रहता है और दिखाई देता है | 

Comments

Popular posts from this blog

13. विद्युत धारा का चुम्बकीय प्रभाव

4. कार्बन और इसके यौगिक

11. मानव-नेत्र एवं रंगबिरंगी दुनियाँ